
CS 1112 Prelim 1 Review

What We’ll Do Today
•Review of these topics:

•Conditional (if-elseif-else) statements
• Loops: for, while, nested
• Functions
• Vectors
• Vectorized code & linear interpolation

• Practice prelim questions which involve several topics at once

•Questions
Yay!

Conditional statements
General form

if (condition1)

% code to run if condition1 is true

elseif (condition2)

% code to run if condition2 is true but
% condition1 is false

else

% code to run if all previous conditions were false

end % important to include this!

Conditional statements
You don’t need any more
branches after the if branch:

if (condition1)
 % some code
end

Conditional statements
You don’t need any more
branches after the if branch:

if (condition1)
 % some code
end

You don’t need elseif branches
after the if branch:

if (condition1)
 % some code
else
 % ‘catch all’ condition
end

Conditional statements
There can be many elseif
branches after the if branch:

if (condition1)
 % some code
elseif (condition2)
 % some code
elseif (condition3)
 % some code
else
 % ‘else’ not required
end

Conditional statements
There can be many elseif
branches after the if branch:

if (condition1)
 if (subcondition1)
 % code to run if condition1 and
 % subcondition1 are both true
 else
 % condition1 is true, subcondition1 is not
 end
elseif (condition2)
 if (subcondition2)
 % condition1 is not true, condition2
 % is true, subcondition2 is true
 elseif (subcondition3)
 % condition1 is not true, condition2 is
true,
 % subcondition2 is not true but
subcondition3
 % is true
 end
else
 % none of the previous conditions are true
end

Can nest if-elseif-else branches
inside any other conditional branch:

if (condition1)
 % some code
elseif (condition2)
 % some code
elseif (condition3)
 % some code
else
 % ‘else’ not required
end

Conditional statements
• Conditions must evaluate to true or false (equivalently, 1 or 0)
• Can join simple conditions together using && (and), || (or)
• Check equality using == (not =, which is for assignment)
• Check inequality using ~=

Conditional statements
• Conditions must evaluate to true or false (equivalently, 1 or 0)
• Can join simple conditions together using && (and), || (or)
• Check equality using == (not =, which is for assignment)
• Check inequality using ~=

Examples
Incorrect
if (a + b = 2)
 % do something if the sum
of
 % a and b is 2
end

Correct
if (a + b == 2)
 % do something if the sum
of
 % a and b is 2
end

Conditional statements
• Conditions must evaluate to true or false (equivalently, 1 or 0)
• Can join simple conditions together using && (and), || (or) , ~ (not)
• Check equality using == (not =, which is for assignment)
• Check inequality using ~=
Examples if (a + b == 2)

 if (c + d == 3)
 % some code to run if the sum
 % of a and b is 2, and also if
 % the sum of c and d is 3
 end
end

The above code is equivalent to this:
if (a + b == 2) && (c + d == 3)
 % some code
end

Incorrect
if (a + b = 2)
 % do something if the sum

 % of a and b is 2
end

Correct
if (a + b == 2)
 % do something if the sum
 % of a and b is 2
end

for and while loops

I need to loop until
some stopping condition(s)

Indefinite iteration

while loop

I know exactly how many
times I need to loop

Fixed iteration

for loop

for and while loops
for loop
Iterates a fixed number of times

Syntax:
for variableName = start:stepSize:end
 % # of times this code will run:
 % floor((end-start)/stepSize) + 1
end

Example: Print the numbers 2, 4, 6, 8
for k = 2:2:8
 disp(k);
end

for and while loops
while loop
Iterates until a condition becomes false

Syntax:
while (condition is true)
 % need code that will eventually
 % cause the condition to become false
end

Example: Print the numbers 2, 4, 6, 8
k = 2;
while (k <= 8)
 disp(k);
 k = k+2;
end

for loop
Iterates a fixed number of times

Syntax:
for variableName = start:stepSize:end
 % # of times this code will run:
 % floor((end-start)/stepSize) + 1
end

Example: Print the numbers 2, 4, 6, 8
for k = 2:2:8
 disp(k);
end

Equivalence of for and while loops
•A while loop can do everything that a for loop can do

•The reverse is not always true (because you are not allowed to use break
to end iteration in a for loop early)

•while loops are useful for not iterating more than is necessary (i.e. they
can be more efficient) (efficiency has to do with code speed, not length)

Equivalence of for and while loops
Recall vectorQuery from lab 6: display 1 if the number r is within the first n
elements of vector v; display 0 if not.

Equivalence of for and while loops
Recall vectorQuery from lab 6: display 1 if the number r is within the first n
elements of vector v; display 0 if not.

Which of these is correct? If both are correct, which is better?

found = 0;
n = min(n, length(v));
for k = 1:n
 if(v(k) == r)
 found = 1;
 end
end
disp(found)

k = 1; found = 0;
while (k <= n && k <= length(v) &&
~found)
 if(v(k) == r)
 found = 1;
 end
 k = k+1;
end
disp(found)

Equivalence of for and while loops
Recall vectorQuery from lab 6: display 1 if the number r is within the first n
elements of vector v; display 0 if not.

Which of these is correct? If both are correct, which is better?

Answer: Both solutions are correct – however, the code on the right is more efficient because it iterates the
minimum number of times necessary.

found = 0;
n = min(n, length(v));
for k = 1:n
 if(v(k) == r)
 found = 1;
 end
end
disp(found)

k = 1; found = 0;
while (k <= n && k <= length(v) &&
~found)
 if(v(k) == r)
 found = 1;
 end
 k = k+1;
end
disp(found)

Some common loop patterns
1. Find the maximum/minimum/“best” item in a set

Example: Given a vector v, display the smallest item in v

Some common loop patterns
1. Find the maximum/minimum/“best” item in a set

Example: Given a vector v, display the smallest item in v

minSoFar = v(1); % Initialize “best-so-far” variable
for k = 2:length(v)
 if (v(k) < minSoFar) % Compare “best-so-far” variable to current
 minSoFar = v(k); % element in the set and update it if
needed
 end
end
disp(minSoFar)

Example: given a vector v, display the product of all elements in v

Some common loop patterns
2. Accumulation: use iteration to compute a statistic from a set of values
 (e.g. a sum, product, average, etc.)

Example: given a vector v, display the product of all elements in v

productSoFar = v(1); % Initial value of statistic

for k = 2:length(v)

% Update statistic by “accumulating” it with the

% current value in the set

 productSoFar = productSoFar*v(k);

end

disp(productSoFar)

Some common loop patterns
2. Accumulation: use iteration to compute a statistic from a set of values
 (e.g. a sum, product, average, etc.)

Example: Draw a disk of radius 1 at every other point in a n ⨉ n grid
(e.g. if n is 5, draw disks at at (1,1), (1,3), (1,5), …, (3,1), (3,3), (3,5)...)

Some common loop patterns
3. Iterate through all combinations of two variables with a nested loop

Example: Draw a disk of radius 1 at every other point in a n ⨉ n grid
(e.g. if n is 5, draw disks at at (1,1), (1,3), (1,5), (3,1), (3,3), (3,5)...)

Some common loop patterns
3. Iterate through all combinations of two variables with a nested loop

Example: Draw a disk of radius 1 at every other point in a n ⨉ n grid
(e.g. if n is 5, draw disks at at (1,1), (1,3), (1,5), …, (3,1), (3,3), (3,5)...)

for x = 1:2:n % Iterate through all possible x-coordinates

 for y = 1:2:n % Iterate through all possible y-coordinates

 DrawDisk(x, y, 1, ‘b’)

 end

end

Some common loop patterns
3. Iterate through all combinations of two variables with a nested loop

Example: Generate random numbers (and display them) until we’ve generated 6

numbers or we get a random number greater than 0.9, whichever happens first.

Some common loop patterns
4. Do something repeatedly until one or more conditions is/are met

Example: Generate random numbers (and display them) until we’ve
generated 6 numbers or we get a random number greater than 0.9, whichever
happens first.

numGenerated = 1;

r = rand;

disp(r)

while (r <= 0.9 && numGenerated <= 5) % 5 and not 6, because we already

 r = rand; % generated one random number before the loop

 disp(r)

 numGenerated = numGenerated + 1;

end

Some common loop patterns
4. Do something repeatedly until one or more conditions is/are met

Tip: It is often easier to think of a quitting condition instead of a continue
condition when writing while loops. Negate a quit condition to derive the
continue condition.

Quit condition: “Quit when x==0 && y==0 && z==0”
Continue condition: “continue while ~(x==0 && y==0 && z==0)”

 same as
 x~=0 || y ~= 0 || z ~= 0

while (x~=0 || y ~= 0 || z ~= 0)

…

end

Some common loop patterns
4. Do something repeatedly until one or more conditions is/are met

Use of loops
Spring 2020 Prelim 1: Question 3
An automotive consultant has determined that car buyers
care most about cost, speed, and safety, which can be
computed as scores (unitless point values) in a simplified
model from the engine horsepower h, car frame weight w in
kilograms, and passenger capacity c as follows:

Use of loops
Spring 2020 Prelim 1: Question 3
An automotive consultant has determined that car buyers care
most about cost, speed, and safety, which can be computed as
scores (unitless point values) in a simplified model from the
engine horsepower h, car frame weight w in kilograms, and
passenger capacity c as follows:

(a) Implement the following function as specified:
 function [speed , cost , safety] = calc_scores(c, w, h)
 % Compute the speed , cost , and safefy scores from c, w, h

Use of loops
Spring 2020 Prelim 1: Question 3
An automotive consultant has determined that car buyers care
most about cost, speed, and safety, which can be computed as
scores (unitless point values) in a simplified model from the
engine horsepower h, car frame weight w in kilograms, and
passenger capacity c as follows:

(a) Implement the following function as specified:
 function [speed , cost , safety] = calc_scores(c, w, h)
 % Compute the speed , cost , and safefy scores from c, w, h
Solution:
speed = log(h)/(wˆ2*c); cost = sqrt(h*c); safety = 10*w/c;

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
% Iteratively find the combination of horsepower (best_h) and weight
(best_w) that achieves the highest speed score (max_speed) in the design
of a 4-passenger car with the the following constraints:
% - possible values of engine horsepower are 50, 51, ..., 200
% - possible values of car frame weight are 1500 , 1600 , ..., 3000
% - cost score of the design cannot exceed the target cost score
(target_c) by more than 20 points
% - safety score of the design cannot differ by more than 30 points from
the target safety score (target_s)

% If multiple combinations of horsepower and weight result in the
highest speed, any one of those combinations may be returned.

% If no combination of horsepower and weight can meet the constraints ,
then set all the return parameters to 0.

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
% Iteratively find the combination of horsepower (best_h) and weight
(best_w) that achieves the highest speed score (max_speed) in the design
of a 4-passenger car with the the following constraints:

⇒ Find value of h and w to maximize speed, with c=4 fixed. We know
[speed , cost , safety] = calc_scores(c, w, h).

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).

% - possible values of engine horsepower are 50, 51, ..., 200
% - possible values of car frame weight are 1500 , 1600 , ..., 3000

⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000

% - cost score of the design cannot exceed the target cost score
(target_c) by more than 20 points
⇒ The cost computed from a possible combination (h,w,c) <= target_c+20

% - safety score of the design cannot differ by more than 30 points from
the target safety score (target_s)
⇒ The safety computed from a possible combination (h,w,c) has to

satisfy: abs(safety - target_s) <= 30.

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000
⇒ The cost computed from a possible combination (h,w,c) <= target_c+20
⇒ The safety computed from a possible combination (h,w,c) has to

satisfy: abs(safety - target_s) <= 30.

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000
⇒ The cost computed from a possible combination (h,w,c) <= target_c+20
⇒ The safety computed from a possible combination (h,w,c) has to

satisfy: abs(safety - target_s) <= 30.
% If multiple combinations of horsepower and weight result in the
highest speed, any one of those combinations may be returned.
⇒ No need to store the previous best combination, always maintain the

current best combination.

% If no combination of horsepower and weight can meet the constraints ,
then set all the return parameters to 0.
⇒ A simple way is to initialize all return parameters to be 0.

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000
⇒ The cost computed from a possible combination (h,w,c) <= target_c+20
⇒ The safety computed from a possible combination (h,w,c) has to

satisfy: abs(safety - target_s) <= 30.
⇒ No need to store the previous best combination, always maintain the

current best combination.
⇒ A simple way is to initialize all return parameters to be 0.

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000
⇒ The cost computed from a possible combination (h,w,c) <= target_c+20
⇒ The safety computed from a possible combination (h,w,c) has to

satisfy: abs(safety - target_s) <= 30.
⇒ No need to store the previous best combination, always maintain the

current best combination.
⇒ A simple way is to initialize all return parameters to be 0.

Solution:
% Step 1: Starts with initialization and fixed constants.

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000
⇒ The cost computed from a possible combination (h,w,c) <= target_c+20
⇒ The safety computed from a possible combination (h,w,c) has to

satisfy: abs(safety - target_s) <= 30.
⇒ No need to store the previous best combination, always maintain the

current best combination.
⇒ A simple way is to initialize all return parameters to be 0.

Solution:
% Step 1: Starts with initialization and fixed constants.
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000
⇒ The cost computed from a possible combination (h,w,c) <= target_c+20
⇒ The safety computed from a possible combination (h,w,c) has to

satisfy: abs(safety - target_s) <= 30.
⇒ No need to store the previous best combination, always maintain the

current best combination.

Solution:
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;
% Step 2: Simplify the task – in this case, remove constraints.

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000

Solution:
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;
% Step 2: Simplify the task – in this case, remove constraints.
% The task is to find best speed given some h and w choices.
% Loops? How many?

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000

Solution:
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;
% Step 2: Simplify the task – in this case, remove constraints.
for h = 50:200
 for w = 1500:100:3000
 % compute the speed
 [speed , cost , safety] = calc_scores(capacity , w, h);
 end
end

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
⇒ Choose h from 50, 51, ..., 200,
⇒ choose w from 1500 , 1600 , ..., 3000

Solution:
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;
for h = 50:200
 for w = 1500:100:3000
 % compute the speed
 [speed , cost , safety] = calc_scores(capacity , w, h);
 end
end

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
⇒ Find value of h and w to maximize speed, with c=4 fixed. We know

[speed , cost , safety] = calc_scores(c, w, h).
Solution:
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;
for h = 50:200
 for w = 1500:100:3000
 % compute the speed
 [speed , cost , safety] = calc_scores(capacity , w, h);
 if (speed > max_speed)
 max_speed= speed; best_h= h; best_w= w;
 end
 end
end

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
Solution:
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;
for h = 50:200
 for w = 1500:100:3000
 % compute the speed
 [speed , cost , safety] = calc_scores(capacity , w, h);
 if (speed > max_speed)
 max_speed= speed; best_h= h; best_w= w;
 end
 end
end

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
Solution:
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;
for h = 50:200
 for w = 1500:100:3000
 % compute the speed
 [speed , cost , safety] = calc_scores(capacity , w, h);
 if (speed > max_speed)
 max_speed= speed; best_h= h; best_w= w;
 end
 % Step 4: complete the task, adding constraints:
 % cost <= target_c+20, abs(safety - target_s) <= 30.
 end
end

Use of loops
Spring 2020 Prelim 1: Question 3

function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
Solution:
capacity= 4; max_speed= 0; best_h= 0; best_w= 0;
for h = 50:200
 for w = 1500:100:3000
 % compute the speed
 [speed , cost , safety] = calc_scores(capacity , w, h);
 if (speed > max_speed) && (cost <= target_c +20) && ...
abs(safety - target_s) <= 30
 max_speed= speed; best_h= h; best_w= w;
 end
end
end

User-defined functions
Syntax for writing a function (with 1 input, 1 output)

function returnVariable = FunctionName(inputVar)
% code goes here
returnVariable = somethingng

User-defined functions
Syntax for writing a function (with 1 input, 1 output)

function returnVariable = FunctionName(inputVar)
% code goes here
returnVariable = something

Syntax for writing a function (with multiple inputs, multiple outputs)

function [return1, return2] = FunctionName(input1,input2)
% code goes here
return1 = something
return2 = something

Note that:
• We need “end” at the end of each function.
• We can NOT directly access/call a subfunction from another file.

Syntax for writing a subfunction
function [rV1,...] = FunctionName(IV1,...)

% code goes here
% use subfunction

end

function [srV1,...] = SubfunctionName(sIV1,...)
% code goes here

end

User-defined functions

User-defined functions: Calling functions
Example: 2020 Spring Q1(b)

What will be printed when the following script is executed?

User-defined functions: Calling functions
Example: 2020 Spring Q1(b)

foo.m file

function a = foo(b,a)
 b = a - b;

 a = b^2;

fprintf(‘b is %d\n’, b)

fprintf(‘a in %d\n’, a)

Example: foo(2, 5)
Inside the function, b = 2, a = 5
a - b = 3, so b is changed to 3.
b^2 = 9, so a is changed to 9
It prints:
“b is 3”
“a is 9“
Output = a = 9

User-defined functions: Calling functions
Example: 2020 Spring Q1(b)

foo.m file

function a = foo(b,a)
 b = a - b;

 a = b^2;

fprintf(‘b is %d\n’, b)

fprintf(‘a in %d\n’, a)

script.m file

v = [4,5,10];

k = [2,3,1];

a = v(k(2));

fprintf(‘a is %d\n’, a)

b = 6;

c = foo(a,b);

fprintf(‘c is %d\n’, c)

fprintf(‘a is %d\n’, a)

k(2) → 3

v(3) → 10

a is 10

b = 6

User-defined functions: Calling functions
Example: 2020 Spring Q1(b)

foo.m file

function a = foo(b,a)
 b = a - b;

 a = b^2;

fprintf(‘b is %d\n’, b)

fprintf(‘a in %d\n’, a)

script.m file

v = [4,5,10];

k = [2,3,1];

a = v(k(2));

fprintf(‘a is %d\n’, a)

b = 6;

c = foo(a,b);

fprintf(‘c is %d\n’, c)

fprintf(‘a is %d\n’, a)

k(2) → 3

v(3) → 10

a is 10,

b = 6

foo(a, b)?

User-defined functions: Calling functions
Example: 2020 Spring Q1(b)

foo.m file

function a = foo(b,a)
 b = a - b;

 a = b^2;

fprintf(‘b is %d\n’, b)

fprintf(‘a in %d\n’, a)

script.m file

v = [4,5,10];

k = [2,3,1];

a = v(k(2));

fprintf(‘a is %d\n’, a)

b = 6;

c = foo(a,b);

fprintf(‘c is %d\n’, c)

fprintf(‘a is %d\n’, a)

k(2) → 3

v(3) → 10

a is 10

foo(a, b) is just
foo(10,6)

Variable scope means that changing
a variable in a function doesn’t affect
its value outside

User-defined functions: Calling functions
Example: 2020 spring Q1(b)

k(2) → 3

v(3) → 10

a is 10

c = foo(10,6);

b = 6-10 → b = -4

a = (-4)^2 = 16

b is -4

a is 16

User-defined functions: Calling functions
Example: 2020 spring Q1(b) a is 10

b is -4

a is 16

Output is a →
output = 16

c = output = 16

c is 16

a = v(k(2)) = 10

a is 10

User-defined functions: Calling functions
Example: 2020 spring Q1(b)

a is 10

b is -4

a is 16

c is 16

a is 10

User-defined functions: Things to remember
• Variables inside a function are local to that function. This means their values are

not accessible outside the function, except for the return variable

• Make sure that the function output variable is assigned a value by the time the
function ends

• Not all functions have outputs (e.g. DrawDisk)

• Not all functions have inputs

• Display/print and return are different. If a value is printed to the command
window, its value is still lost unless it is assigned to the output variable (returned).

• Synonymous terms: Input variable, argument, parameter to a function

• Synonymous terms: Return variable, output variable

User-defined functions: Things to remember
• Variables inside a function are local to that function. This means their values are

not accessible outside the function, except for the return variable

• Make sure that the function output variable is assigned a value by the time the
function ends

• Not all functions have outputs (e.g. DrawDisk)

• Not all functions have inputs

• Display/print and return are different. If a value is printed to the command
window, its value is still lost unless it is assigned to the output variable (returned).

• Synonymous terms: Input variable, argument, parameter to a function

• Synonymous terms: Return variable, output variable

User-defined functions: Things to remember
• Variables inside a function are local to that function. This means their values are

not accessible outside the function, except for the return variable

• Make sure that the function output variable is assigned a value by the time the
function ends

• Not all functions have outputs (e.g. DrawDisk)

• Not all functions have inputs

• Display/print and return are different. If a value is printed to the command
window, its value is still lost unless it is assigned to the output variable (returned).

• Synonymous terms: Input variable, argument, parameter to a function

• Synonymous terms: Return variable, output variable

User-defined functions: Things to remember
• Variables inside a function are local to that function. This means their values are

not accessible outside the function, except for the return variable

• Make sure that the function output variable is assigned a value by the time the
function ends

• Not all functions have outputs (e.g. DrawRect)

• Not all functions have inputs

• Display/print and return are different. If a value is printed to the command
window, its value is still lost unless it is assigned to the output variable (returned).

• Synonymous terms: Input variable, argument, parameter to a function

• Synonymous terms: Return variable, output variable

Built-in Functions

• abs, sqrt, rem, floor, ceil, round, rand, zeros, ones, linspace, length, input, fprintf, disp, plot, bar
• n = input(‘please input: ’);
• y = linspace(x1,x2,n); generates n points. The spacing between the points is (x2-x1)/(n-1).
• rand: generate a random number in the range (0,1)

• Need to know how to:
- Generate a random number v in the range (a,b)

v = a + rand*(b-a);
% rand*(b-a) gives random numbers in the range (0,b-a)

- Generate a random integer v in the range [a,b] without using randi
v = ceil(a-1 + rand*(b-a+1));
v = floor (a + rand*(b-a+1));

Vectors

One way of creating a vector:
a = [1, 2, 3]; % Dimension 1x3
b = [1; 2; 3]; % Dimension 3x1
c = 1:3; % Same as c = [1, 2, 3];
d = linspace(1, 3, 3); % Same as d =[1,2,3];

Vectors

Another way: create an empty
vector, then fill it. (useful if you don’t
know in advance how big the vector
should be)
c = [];
c(1) = 1; c(2) = 2; c(3) = 3;

One way of creating a vector:
a = [1, 2, 3]; % Dimension 1x3
b = [1; 2; 3]; % Dimension 3x1
c = 1:3; % Same as c = [1, 2, 3];
d = linspace(1, 3, 3); % Same as d =[1,2,3];

Vectors

Another way: create an empty
vector, then fill it. (useful if you don’t
know in advance how big the vector
should be)
c = [];
c(1) = 1; c(2) = 2; c(3) = 3;

Useful vector functions:
d = zeros(1,3); % [0,0,0]
e = ones(1,3); % [1,1,1]
f = length(d); % f is 3

One way of creating a vector:
a = [1, 2, 3]; % Dimension 1x3
b = [1; 2; 3]; % Dimension 3x1
c = 1:3; % Same as c = [1, 2, 3];
d = linspace(1, 3, 3); % Same as d =[1,2,3];

Vectors

One way of creating a vector:
a = [1, 2, 3]; % Dimension 1x3
b = [1; 2; 3]; % Dimension 3x1
c = 1:3; % Same as c = [1, 2, 3];
d = linspace(1, 3, 3); % Same as d =[1,2,3];

Another way: create an empty
vector, then fill it. (useful if you don’t
know in advance how big the vector
should be)
c = [];
c(1) = 1; c(2) = 2; c(3) = 3;

Useful vector functions:
d = zeros(1,3); % [0,0,0]
e = ones(1,3); % [1,1,1]
f = length(d); % f is 3

Accessing an index of a vector with a loop
% Add 1 to each element of c and display it
for k = 1:length(c)
 c(k) = c(k) + 1; % not c = c+1
 disp(c(k))
end

Using Vectors: Building vectors
Example: 2019 fall Q2(b)
Write a function named recomputeEvens that has one input

parameter v (a vector) and returns a vector of the same length

whose odd-indexed elements match those of v but whose

even-indexed elements are equal to the average of that element’s

left and right neighbors. You may assume that v has an odd length

of at least 3.

Example: recomputeEvens([1 -2 4]) should return [1 2.5 4].

Note: You must write the function header along with the function

body, but you do not need to write the function comment.

Using Vectors: Building vectors
Example: 2019 fall Q2(b)
Write a function named recomputeEvens that has one input parameter v (a

vector) and returns a vector of the same length whose odd-indexed

elements match those of v but whose even-indexed elements are equal to

the average of that element’s left and right neighbors. You may assume

that v has an odd length of at least 3.

Example: recomputeEvens([1 -2 4]) should return [1 2.5 4].

Solution:

function v = recomputeEvens(v)
for k = 2:2:length(v)

v(k) = (v(k - 1) + v(k + 1))/2;

end

Using Vectors: Building vectors
Example: 2019 fall Q2(b)
Write a function named recomputeEvens that has one input parameter v (a vector)

and returns a vector of the same length whose odd-indexed elements match those of

v but whose even-indexed elements are equal to the average of that element’s left

and right neighbors. You may assume that v has an odd length of at least 3.

Alternate Solution:

function w = recomputeEvens(v)
for k = 1:length(v)

if rem(k, 2) == 1

w(k) = v(k);

else

w(k)=(v(k-1)+v(k+1))/2;

end

end

Vectorized Code
● Operations on a whole vector that work element-wise

v = [1 2 3 4]
disp(-v) % [-1 -2 -3 -4]
disp(v+v) % [2 4 6 8]
disp(v.*v) % [1 4 9 16]
disp(v.^2) % [1 4 9 16]
disp(sin(v)) % [0.8415 0.9093 0.1411 -0.7568]

Linear Interpolation

Linear Interpolation: Example

Draw an n*n (n positive integer) grid of disks in different colors
interpolated between a few colors.

Each disk is drawn using the by-now familiar

function DrawDisk(x, y, r, c), where the color

c is determined by the value of (x + y)

The disks are centered at (i - 0.5, j - 0.5) for

integers 1 ≤ i, j ≤ n, and disks have r = 0.5

Linear Interpolation: Example

Write a function DrawRainbow(n, color1, color2, color3, color4)

The disk centered at (x, y) has color…
• color1 if x + y = 0

• A color interpolated between color1 and color2 if 0 < x + y < 2 * n / 3

• color2 if x + y = 2 * n / 3

• A color interpolated between color2 and color3 if 2 * n / 3 < x + y < 4 * n / 3

• color3 if x + y = 4 * n / 3

• A color interpolated between color3 and color4 if 4 * n / 3 < x + y < 2 * n

• color4 if x + y = 2 * n

Linear Interpolation: Example

Write a function DrawRainbow(n, color1, color2, color3, color4)

First step: we should call DrawDisk in some nested for-loop!

What’s the color here?

Linear Interpolation: Example

Write a function DrawRainbow(n, color1, color2, color3, color4)

Second step: determine the color of each disk!

There are 3 cases!

Questions?
Options:

● Questions

● More practice prelim problems

Using Vectors
Example: 2020 fall Q1.2
Implement the following function as specified:
function s = maxAdjacentSum (v)

% Return the largest adjacent sum in vector v. An adjacent sum is the sum

% of two adjacent elements in a vector.

% v: a numeric vector with at least two elements

% s: the largest adjacent sum in vector v

% Example: maxAdjacentSum ([4 1 7 -1]) returns 8 since it is the

% value among the adjacent sums 4+1, 1+7, and 7+(-1)

% The only function allowed is length.

Using Vectors
Example: 2020 fall Q1.2
Implement the following function as specified:
function s = maxAdjacentSum (v)

% Return the largest adjacent sum in vector v. An adjacent sum is the sum

% of two adjacent elements in a vector.

% v: a numeric vector with at least two elements

% s: the largest adjacent sum in vector v

% Example: maxAdjacentSum ([4 1 7 -1]) returns 8 since it is the

% value among the adjacent sums 4+1, 1+7, and 7+(-1)

% The only function allowed is length.

What kind of loops?

Using Vectors
Example: 2020 fall Q1.2
Implement the following function as specified:
function s = maxAdjacentSum (v)

% Return the largest adjacent sum in vector v. An adjacent sum is the sum

% of two adjacent elements in a vector.

% v: a numeric vector with at least two elements

% s: the largest adjacent sum in vector v

% Example: maxAdjacentSum ([4 1 7 -1]) returns 8 since it is the

% value among the adjacent sums 4+1, 1+7, and 7+(-1)

% The only function allowed is length.

What kind of loops?
Fixed iteration ⇒ for loop

Using Vectors
Example: 2020 fall Q1.2
Implement the following function as specified:
function s = maxAdjacentSum (v)

% Return the largest adjacent sum in vector v. An adjacent sum is the sum

% of two adjacent elements in a vector.

% v: a numeric vector with at least two elements

% s: the largest adjacent sum in vector v

% Example: maxAdjacentSum ([4 1 7 -1]) returns 8 since it is the

% value among the adjacent sums 4+1, 1+7, and 7+(-1)

% The only function allowed is length.

What kind of loops?
Fixed iteration ⇒ for loop

What loop pattern?

Using Vectors
Example: 2020 fall Q1.2
Implement the following function as specified:
function s = maxAdjacentSum (v)

% Return the largest adjacent sum in vector v. An adjacent sum is the sum

% of two adjacent elements in a vector.

% v: a numeric vector with at least two elements

% s: the largest adjacent sum in vector v

% Example: maxAdjacentSum ([4 1 7 -1]) returns 8 since it is the

% value among the adjacent sums 4+1, 1+7, and 7+(-1)

% The only function allowed is length.

What kind of loops?
Fixed iteration ⇒ for loop

What loop pattern?
Find the maximum/minimum/”best” item in a set

Using Vectors
Example: 2020 fall Q1.2
Implement the following function as specified:
function s = maxAdjacentSum (v)

% Return the largest adjacent sum in vector v. An adjacent sum is the sum

% of two adjacent elements in a vector.

% v: a numeric vector with at least two elements

% s: the largest adjacent sum in vector v

% The only function allowed is length.

Solution:
s= -inf; % or -realmax or the first adjacent sum
for k= 2: length(v)

aSum= v(k-1) + v(k);
if aSum > s

s= aSum;
end

end

Takeaway:
Maintain a “current best value” s
Each time a new item is obtained,
compare it to the “current best value” s

Multi-Part
Example: 2020 Spring Q3

function [speed, cost, safety] = calc_scores (c, w, h)
% Compute the speed, cost, and safety scores from the

% passenger capacity

% ‘c’, car frame weight ‘w’, and engine horsepower `h`

% according to the consultant 's model.

Multi-Part
Solution: 2020 Spring Q3

function [speed, cost, safety] = calc_scores (c, w, h)
% Compute the speed, cost, and safety scores from the

% passenger capacity

% ‘c’, car frame weight ‘w’, and engine horsepower `h`

% according to the consultant 's model.

speed = log(h)/(c*w^2)
cost = sqrt(h*c)
safety = 10*w/c

Multi-Part
Solution: 2020 Spring Q3
function [max_speed, best_h, best_w] = optimize_car(target_c, target_s)
% Iteratively find the combination of horsepower (best_h) and weight

% (best_w)that achieves the highest speed score (max_speed) in the

design

% of a 4 - passenger car with the following constraints:

% - possible values of engine horsepower are 50 , 51 , ... , 200

% - possible values of car frame weight are 1500 , 1600 , ... , 3000

% - cost score of the design cannot exceed the target cost score

% (target_c) by more than 20 points

% - safety score of the design cannot differ by more than 30 points from

% the target safety score (target_s)

% If multiple combinations of horsepower and weight result in the

highest

% speed, any one of those combinations may be returned.

% If no combination of horsepower and weight can meet the constraints,

% then set all the return parameters to 0.

Multi-Part
Solution: 2020 Spring Q3

1. Iterate
a. Definite iteration
b. Iterate through h & w,

according to the increments
they gave

c = 4; % capacity

max_speed = 0;

best_h = 0;

best_w = 0;

for h = 50:200

for w = 1500:100:3000

[speed,cost,safety] = calc_scores(c,w,h);

if (speed > max_speed) && …

 (cost <= target_c +20) && …

 (safety <= target_s +30) &&

 (safety >= target_s -30)

 % OR : abs (safety - target_s) <= 30

max_speed = speed;

best_h = h;

best_w = w;

end

end

end

Multi-Part
Solution: 2020 Spring Q3

1. Iterate
2. Initializations

○ Capacity (need for calling calc
scores)

○ Max speed
○ Best h & w
○ If the algorithm doesn’t find

any combo, you should return
0 → so what should you
initialize things as??

c = 4; % capacity

max_speed = 0;

best_h = 0;

best_w = 0;

for h = 50:200

for w = 1500:100:3000

[speed,cost,safety] = calc_scores(c,w,h);

if (speed > max_speed) && …

 (cost <= target_c +20) && …

 (safety <= target_s +30) &&

 (safety >= target_s -30)

 % OR : abs (safety - target_s) <= 30

max_speed = speed;

best_h = h;

best_w = w;

end

end

end

Multi-Part
Solution: 2020 Spring Q3

1. Iterate
2. Initializations
3. Call function calc_scores

○ Inputs: Capacity, weight, &
horsepower

○ Outputs: Speed, cost, & safety

c = 4; % capacity

max_speed = 0;

best_h = 0;

best_w = 0;

for h = 50:200

for w = 1500:100:3000

[speed,cost,safety] = calc_scores(c,w,h);

if (speed > max_speed) && …

 (cost <= target_c +20) && …

 (safety <= target_s +30) &&

 (safety >= target_s -30)

 % OR : abs (safety - target_s) <= 30

max_speed = speed;

best_h = h;

best_w = w;

end

end

end

Multi-Part
Solution: 2020 Spring Q3

1. Iterate
2. Initializations
3. Call function
4. Best-so-far algorithm

○ Check if the speed is “better”
(greater) than the max speed

○ Check if cost is under the
target + 20

○ Check is safety score is within
30 points above or below
target

○ If all these conditions are met,
replace the values with the
current best value

c = 4; % capacity

max_speed = 0;

best_h = 0;

best_w = 0;

for h = 50:200

for w = 1500:100:3000

[speed,cost,safety] = calc_scores(c,w,h);

if (speed > max_speed) && …

 (cost <= target_c +20) && …

 (safety <= target_s +30) &&

 (safety >= target_s -30)

 % OR : abs (safety - target_s) <= 30

max_speed = speed;

best_h = h;

best_w = w;

end

end

end

